SECONDARY FLOWS IN A ROTATING CIRCULAR
CYLINDER OF INCOMPRESSIBLE CONDUCTING

FLUID AS THE RESULT OF THE SUDDEN TURNING-ON
OF A TRANSVERSE MAGNETIC FIELD
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We study vortex flows in a rotating circular cylinder of incompressible fluid resulting
from the sudden turning-on of a transverse magnetic field. The investigation is performed
for the initial stage when secondary flow is determined mainly by Lorentz forces, and the
effect of viscosity and the convective transport of vorticity by secondary flow is negligibly
small. No restrictions are imposed on the magnetic Reynolds number Ry, for the basic
rotational motion; the number Ry,' calculated from a typical secondary flow speed is as-
sumed small.

1. The magnetohydrodynamics of a rotating fluid has interesting applications in astrophysics and
geophysics [1]. Most of the problems involved are related to nonstationary interactions of a rotating con-
ducting fluid with a magnetic field.

The present paper is devoted to a study of secondary flows produced in a rotating fluid by a change
in the external magnetic field. An idealized model of the rotating fluid is employed, and it is assumed that
the magnetic field is turned on "instantaneously." The results obtained may be useful in the study of lab-
oratory models of astrophysical and geophysical phenomena.

The method of solution and the simplifying assumptions are similar to those used by Sneyd [2].

Sneyd [2] treats vortex flow in a long circular cylinder of conducting fluid resulting from the sudden
inclusion or ejection of an external magnetic field, The diffusion of the field into the fluid during the change
of the external magnetic field produces an electric current in the fluid and Lorentz forces. If the Lorentz
forces are nonpotential they cannot be balanced by a pressure gradient and lead to the production of vortex
flow. Sneyd [2] considers simple geometry leading to nonpotential Lorentz forces — geometry with a uni-
form external field at right angles to the axis of the cylinder.

It is shown [2] that if the magnetic Reynolds number is small, it is possible to distinguish an initial
stage in the development of vortex flow in the cylinder which lasts for a time of the order t;=4rca?/c?,
where a is the radius of the cylinder, and ¢ is the conductivity of the fluid. During this stage the flow is
determined solely by the Lorentz forces, and other factors such as viscosity and convective transport of
eddies have a negligible effect; they become important later. Sneyd [2] calculates the flow established to
the end of this initial stage.

It is of interest to examine vortex flow resulting from the penetration of an external field into a
moving fluid. In this case the magnetic field is established in the fluid both by diffusion and by the con-
vective transport of lines of force. This complicates the distribution of Lorentz forces and the distribu-
tion of eddies in the fluid.

In the present paper the initiation of secondary vortex flow in a moving fluid is treated through the
example of a rotating fluid cylinder. The conducting fluid is contained in a long nonconducting cylinder of
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8/Rm inside radius a. The container and fluid rotate about the axis of the

* o, (e)l cylinder with a constant angular velocity £,. At time t=0 a uniform
04 external magnetic field is turned on instantaneously at rightangles
to the axis of the cylinder. Itis required to determine the distribu-
1/ 0.3 tion of the magnetic field and the Lorentz forces inside the fluid,
s and from these to find the velocity distribution of secondary flow.
10z For Q,=0 the problem under discussion reduces to Sneyd's
z problem [2], and therefore the solution presented below is a gen-
a1 eralization of [2] to the case of a rotating cylinder. Just as in [2],
the magnetic Reynolds number, calculated from a typical secondary
£ flow of speed V, is assumed small
] 2.5 10
Fig. 1 R, =4nocVald<<€1 (1.1)

where the prime emphasizes that the number is calculated from the
secondary flow speed.

No restrictions are imposed on the magnetic Reynolds number Ry, = 4108 az/c%alculated from a
typical velocity aQ, of the basic rotational motion. Since Ry, =2nty/ T, where ty=4rca’/c? is the time of
penetration of the field, and T =2n/%; is the time for one revolution of the cylinder, for Ry, « 1 the rota~
tion does not affect the penetration of the field or the character of the secondary flow. For Ry, 51 this ef-
fect is significant, and the character of the secondary flow differs sharply from the case of a stationary
cylinder.

As in [2] we do not consider the whole penetration process and the subsequent change of vortex flow.
The purpose of the study is to obtain a picture of the flow up to the instant of almost complete establish-
ment of a stationary magnetic field in the cylinder, i.e., up to the end of the initial stage. While this flow
is steady in [2], in the case of a rotating cylinder the Lorentz forces do not vanish with the establishment
of a stationary distribution of the magnetic field, and their effect on the secondary flow continues. We ar-
bitrarily take the time t=1; as the instant of establishing the field. Most of the graphical material presented
below refers to this time, although the solution obtained is valid for times somewhat longer than t,, until
the effect of viscosity and convective transport of eddies becomes significant.

2. We calculate the distribution of the magnetic field. In a cylindrical coordinate system (r, &, z)
with the angle @ measured from the direction of the applied uniform field Hy, the required magnetic field
H has two components [Hy(r, &, t), Hy(r, @, t)] determined by the vector potential A=Alr, o, te,

H=cwlA = <_L o4 94 0>

roox T er:
The change in the magnetic field as it penetrates the rotating cylinder is described by the equations

A 342
A4 =0, 2 =—0,=" tv,A4 (2.1

Here vm:cz/4n'cr, and the subscripts 1 and 2 refer to the field outside and inside the cylinder, re-
spectively. As the velocity in the convective term in the second equation we take the velocity vy=Qqreq of
the basic rotational motion. On the basis of (1.1) the secondary flow does not affect the penetration of the
field. The initial and boundary conditions are the same as in [2] for a stationary cylinder:

Ay (r, a, 0) = H0<r—ir2—->sina, 4s(r,a,0)=0 (2.2)
Ay(a, o, 0) = 4,0, a,1), 22 . =22 _ (2.3)
Ay(r, a, t) > Hyrsina  for r— > (2.4)
We seek a solution in the form
Ay(r, a,t) = fi(r, 1) &=, Axr, a,t) = for, £) e*
For the complex functions fy{r, t) and f,(r, t) we obtain the equations
L) dnen- .
F=r ) - (F e m)heo
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A 0) = =il (r—2), £, 0)=0 (2.6)
oh 25

hah=hn P =L (2.7
fi(r Brow > —iHyr (2.8)
The equations can be solved by taking Laplace transforms. The expressions for Ay(r, @, t) and
Aylr, @, t) have the form
A P PR PR Y () et R
(r, a, {) iHrét {1 [1 2 o T Z—*——~a o ]} (2.9)
%0 (C‘» iR )
s oy b
Ay (ry @, 1) = 2H yaet {_ e 2 Z T )} (2.10)

Here 8 =ViRy, is a complex number, the an are the positive zeros of Jy(x), 7=(vy /@i =t/t, is the
dimensionless time,’and £ =r/a is the dimensionless radius. In the limiting case 8=0(2;=0) the real part
of (2.10) is the same as the result in [2].

For 7>1, i.e., after a lapse of time of the order t, the series in (2.9) and (2.10) practically vanish,
and the solution becomes stationary. The steady magnetic field in this case differs from the uniform field
H, since the lines of force are twisted by the rotating cylinder.

Pictures of the lines of force corresponding to the solution obtained are not presented in graphical
form, since a graphical representation of them can be obtained from illustrative materials presented in
[3], where a numerical method is used to investigate the behavior of the magnetic field in a rotating con-
ducting fluid.

The difference between the initial conditions for the field taken in [3] and those in the present paper
is unimportant for establishing the pattern of the magnetic field distribution. The difference in boundary
conditions is important. In the present paper the rotating cylinder is in a nonconducting medium, and the
natural boundary condition at infinity is used in the solution. In [3] it was assumed that outside the ro-
tating fluid of finite conductivity o there is a boundary with a stationary perfectly conducting fluid. This
condition leads to the very strong increase of the magnetic field at the outer boundary of the rotating fluid
noted in [3] for large Ry,- In the problem under discussion the steady magnetic field outside the cylinder
as Rm— = coincides with the initial distribution and the maximum value of the field is 2H; (at & = x7/2);
i.e., the field strength is doubled.

The ejection of the magnetic field from the rotating fluid for large values of Ry, is unrelated to the
boundary conditions employed.

We calculate the eddy velocity distribution. In a moving conducting fluid the change in vorticity w=
curlvoccurs both as a result of convective transport and diffusion because of viscosity, and as a result of
the nonpotential Lorentz force ¢! [jX H]. For two-dimensional flow of an incompressible fluid the equa-
tion for the vorticity has the form

2 +(\0V)a)+(vV)(o_—cur1[J x H] + vAo (3.1)

Here v is the kinematic viscosity, v=Q req is the given velocity of rotational motion, and v denotes
the secondary flow velocity.

It is shown in [2] that the viscosity and the convective term (in our case one of two convective terms)
do not affect the distribution of vorticity established up to the time t; of the total penetration of the magnetic
field into the cylinder.

As is clear from the estimate

Vm

| vA® |~L (3.2)
dw [ 0t

(vV)ml Va —~ R’
dwjor | v T Tma

assumptions (1.1), and the inequality v/vy, < 1, which holds for liquid metals and electrolytes, the last
terms on both sides of Eq. (3.1) can be neglected in comparison with the first term.
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As a result we obtain the equation
dn ) 1 . . .
e + Q v -E;E-CLII‘IZ“ xH] (©= oe,) (3.3)
which differs from the corresponding equation in [2] only by the convective term @, dw/da related to the

basic rotational motion. The right-hand side of Eq. (3.3) is evaluated from the known solution (2.10) for
the magnetic field. Calculations give

2ot X B = Ro (3 (r, D o o) (3.4)
He 1 T2 GBE)? d [T1(%8) ] a mir ) 45
Fifr,1) = nPa‘Z 3 {[3.71, 0 2 T, & [-71 ) ]e m (3.5)

-(a 2y 0iR

T (@,8) a Jr (,8)e ™ g2 a2
— 2 Z Z Jie )Jlgak)(a 2+iR ) @ iR }

n==l k=1
1 (2] dE) [J1 (,£) T+ (iBEN]
Fz (T’, t) L"'IPQZ 1 { I3-]o (lg) Z A (un) (3 .6)
% a, 4 LBm -(a iR 0t f Jl (iBE) > Ju' (iBE)
o f—iR 7"\3-70 @B) /) Jo(iB)
(aﬂ'ﬁ-ak')‘:

Ji (a8 o J1 () (o2 — ae
+ 2 2 2 Tl ) T (@) (0,F — iR, (0 F R,

n==} k=1

The complex functions Fy(r, t) and Fy(r, t) do not depend on the angle ¢, and therefore the o depen~
dence is described solely by the factor exp(2i@) in the first term of (3.4). Because of this factor the vor-
tex flow degenerates into four separate cells when Q;=0. The second term of F,(r, 1) is related to the ro-
tation and is absent when the cyvlinder is stationary.

As a result of the presence of the factor expl~a,’r) in Egs. (3.5) and (3.6) the strong action of the
magnetic field on the rotating fluid,

™ pa® € \BJo(B)/ Jo(B) |

Fic-curlylj X H] = Re {iR LM (jl s )* 2 (iBﬁ)} @D

ceases to depend on the angle & and the time t when 7> 1. Here the asterisk denotes the complex conju-
gate. This quantity together with the viscosity determines the steady flow which was investigated in [4]
for Ry > 1.

The solution of Eg. (3.3) with the right-hand side of (3.4) satisfying the initial condition w(r, &, 0)=
2§, is sought in the complex form:

o(r, 0,8 =20, + o, {r, a, t) +w, (r, 1) © = @ (1, 1) &* (3.8)

The unknowns ¢(r, t) and w,lr, t) satisfy zero initial conditions
and the equations

J,U d@/dt + 2LQO(-:P == Fl(r‘l t)a d(!):_;/dt == F2 (rv t)
Re wz /ﬂm /; -
/,// Omitting the intermediate calculations, including the summing of
b e - the series by using contour integration, the result of the integration
can be written in the form
27 2u(a-Ct) (3.9)
Ha?
/ @1(ra“’t>to)=—%‘§“—®1(§): mz(r,t>tﬂ)__4 v, ®,E )
] _ 2 L@ne g e heg
B9 { BJQ-(LB) Jo B 2} Tole,) J1(x,) (@, + Rmz)} {3.10)
A& (G o (B) 1 (BE) [1 — BEY] T (BYBRESY (BE)
10 ®:& 9= —+{ihm 27 (8B (5.41)
/ et J1 (@ E) Ty (i, ) o B . Ji (iBE) \* J4’ (iBE) )
I + 2 El T e (o o iR+ HimT (‘BJ;'(iB)> To (iB) }
E As a consequence of replacing exp (; on?7) by zero the solution
Vi 75 1.0 presented here is valid only for 7> 1. Practically, it can be applied
Fig. 2 from the time 7=1 with only a small error.
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For Ry « 1 the solution is simplified:

TI? m I -
Reo (r, @, 2> t) = 5= { g¥cos 2 (0 — Qot) + 2sina 2 yen) 31‘2 ;(Z ?_:‘H 2)}
1 v 7 To (0, 8) — (o £)"
o011 [ 8] 10§ SO
n=1 n n/

For a stationary cylinder (2)=0, Ry, =0) the vorticity «, vanishes, and Re wy(r, @, t>1;) agrees with
the result in [2]. The difference in constants arises from the use of different systems of units.

The dimensionless functions &,(¢) and &,(¢, T) were evaluated for three values of Ry, (0.01, 0.1, 1.0);
the results are presented graphically. Figure 1 shows the modulus (curve 1) and the argument (curve 2)
of the function

@, (§) = | D, (§) | e-it=2-EN

Since |<I>1 ()] varies slowly with Ry, the three curves merge into one. The angle 9 is nearly pro-
portional to Ry, and therefore Fig. 1 shows 9(§)/ Ry, which is represented by a single curve for the three
values of Ry,

Since the real value of w,(r, t) is completely determined by only the real part of &,(¢, 7), Fig. 2
shows Re &,(¢, 7) for two values of 7 (1.0, 2.0) (solid curves). As a consequence of the linear dependence
of ®,(¢, 7) on 7 the function Re ®,(£, 7) can be constructed from the data presented for any time 7. For
clarity the curve for 7=3 is shown dashed in Fig. 2.

Equation (3.8) shows that the secondary flow under study is a superposition of two qualitatively dif-
ferent flows. The first of these, determined by the vorticity wy(r, @, t) and containing the exponential fac-
tor exp (2i@), has a structure consisting of four separate cells. This flow is shown schematically in Fig. 3.
The fluid circulates in opposite directions in adjacent cells; i.e., wy changes sign in crossing the boundary
between cells. Consequently, this boundary is determined by the condition Re wy(r, ¢, t)=0. The equa-
tions @y =0,(¢) of the radial parts of the boundaries of the cells, shown dashed in Fig. 3, take the form

t 4.
Qo = —Te(é)—’rn%’l‘got

where n=0, 1, 2, 3, respectively, for each of the four cells; the last term @, t ensures the rotation of the
cells with constant angular velocity 2.

In the general case = 0 (i.e., Ry, = 0) these boundaries are twisted. As can be seen from Fig. 1
the angle of torsion 1/29(5) is directly proportional to Ryy; for Ryp =1 this angle reaches 12°. Itis clear
from (3.10) that the "cellular” flow for t>t, ceases to depend on the time and is only shifted in space by
the basic rotation with the angular velocity .

The flow described by the vorticity wy(r, t) is completely axisymmetric. This axisymmetric flow
continues to depend on time for t>t, and, consequently, the vorticity w, and the flow velocity depend lin-
early on the time. This is a result of the fact that after the steady state is established the magnetic field
continues to exert a strong effect ("resistance™) on the rotating fluid and its effect is axisymmetric 3.7.
As a result this flow becomes predominant for large t, and the secondary flow begins to approach axial
symmetry. For the small values of Ry, necessary for this the time turns out to be rather large, and the
present treatment, which neglects viscous forces and the convective
transport of eddies by secondary flow, becomes inapplicable earlier. If
Rm 3> 1, the flow corresponding to w, rapidly becomes controlling. The
velocity field will be determined later, and diagrams of the streamhnes
will be presented.

4. The velocity field of the secondary flow is determined by the
equations
divv=0, cwl v =0 =0, a,l)e,

from which it follows that

_ _ 1 9% ¥ (4.1
v curl[l{f(r, @, t)ez]‘ o er_Tez
AT = m = — (@, (76-) ezz(a-R ) £ (I)z (g’ ’l,’)} (4_2)

4npv
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[

Fig. 4

On the right~hand side of the last equation the term 2§, which does
not refer to secondary flow, has been omitted. The solution for the stream
function is sought in the form

T b0 ), PE T = b

2i{a~R m'E)

Y (r,a,t) = P, (8 1) {4.3)

The functions y;(£) and §,(¢, 7) which are bounded at ¢ =0 are deter-
mined by the equations

1 d /. d 4 (4.4)
T = ) wh=—0E
1 d (. d
B A SN (4.5)
and the supplementary boundary condition
P (1) =20 (4.8)

following from the condition vplp=,=0.

a

The function i,(&, 7) can be determined to within a constant, since a constant does not affect the ve-
locity v. For definiteness we use the condition ¢,(1, 7 =0. The solution of the linear inhomogeneous equa~
tion (4.4) satisfying condition (4.6) is found by using the Green's function and has the form

Py (B) = _L{in SO, (s)ds — §2§s3(1)1(s) ds - §2S—:—®1 (s)ds}
0 13

Equation (4.5) can be integrated directly,

il

2 & i
P 1) = -;—SSCDQ(S, T)dsdp = — ln‘észDg(s, r)ds———S(ln 5)s®, (s, T)ds
0 0 3

a5

The dimensionless stream function ¢{¢, o, 1) determines the velocity field through (4.1) and {4.3),

He? 1 o 8
v(r, a,t)= 4,—;:«;: [—E— Re-a—f— e, — Re -a—l,p-ea] (4.7
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The streamlines are represented by the lines for Re y(¢, @, 7) = const.

Figures 4 and 5 show the streamlines with the corresponding values of the dimensionless stream
function ¢ for Ry, =0.1 and Ry =1.0. The change in the character of the secondary flow with time is traced
for Ry =0.1. For 7=1 (Fig. 4a, curves 1-7 correspond to the values =0, 0.005, 0, —0.005, ~0.01, —0.015,
and —0.02, respectively) the flow is similar to that found in [2] when the field penetrates a stationary cyl-
inder. There are cells with opposite directions of rotation although they do not reach the center of the cir-
cle, since close to the center w, predominates over w; even for 7=1, as can be seen from Figs. 1 and 2.

For 7=2 (Fig. 4b, curves 1-6 correspond to y =0, 0, —=0.01, —0.02, —0.03, and —0.04, respectively)
axisymmetric flow corresponding to the vorticity w,(r, t) is not so intense as to completely smear out the
cellular structure of the flow corresponding to the vorticity w,(r, @, t). Only for 7=3 (Fig. 4c, curves 1-4
correspond to ¥ =0, —0.02, — 0,04, and —0.06, respectively) does the flow take on the second characteristic
form with the streamlines encircling the axis of the cylinder.

For Ry, =1 the flow wz(r, t) predominates from the time 7=1, and therefore on Fig. 5 the stream-
lines are shown only for this instant. Here 1) y=0; 2) y ==0.04; 3) » =—0.09; 4) = —0.14.

On the basis of (4.7) assumption (1.1) is equivalent to the condition

(H*4mp) (4ns afc®)? << 1

LITERATURE CITED

1. H. K. Moffat, "Report on the NATO advanced study institute on magnetohydrodynamic phenomena in
rotating fluids," J. Fluid Mech., 57, 625 (1973).

A. Sneyd, "Generation of fluid motion in a circular cylinder by an unsteady applied magnetic field,"
J. Fluid Mech., 49, 817 (1971).

3. N. O. Weiss, "The expulsion of magnetic flux by eddies,"” Proc. Roy. Soc., 2934, 310 (19686).

4. H. K. Moffat, "On fluid flow induced by a rotating magnetic field," J. Fluid Mech., 22, 521 (1965).

[3)

612



