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We study vortex flows in a rotating c i r cu la r  cylinder of incompress ib le  fluid result ing 
from the sudden turning-on of a t r ansve r se  magnetic  field. The investigation is per formed 
for the initial stage when secondary flow is determined mainly by Lorentz forces ,  and the 
effect of v iscosi ty  and the convective t ranspor t  of vort ici ty by secondary  flow is negligibly 
small.  No res t r ic t ions  are  imposed on the magnetic Reynolds number R m for the basic 
rotational motion; the number  R m '  calculated f rom a typical secondary flow speed is a s -  
sumed small.  

i. The magnetohydrodynamics of a rotating fluid has interesting applications in astrophysics and 
geophysics [1]. Most of the problems involved are related to nonstationary interactions of a rotating con- 
ducting fluid with a magnetic field. 

The present paper is devoted to a study of secondary flows produced in a rotating fluid by a change 
in the external magnetic field. An idealized model of the rotating fluid is employed, and it is assumed that 
the magnetic field is turned on "instantaneously." The results obtained may be useful in the study of lab- 
oratory models of astrophysical and geophysical phenomena. 

The method of solution and the simplifying assumptions are similar to those used by Sneyd [2]. 

Sneyd [2] treats vortex flow in a long circular cylinder of conducting fluid resulting from the sudden 
inclusion or ejection of an external magnetic field. The diffusion of the field into the fluid during the change 
of the external magnetic field produces an electric current in the fluid and Lorentz forces. If the Lorentz 
forces are nonpotential they cannot be balanced by a pressure gradient and lead to the production of vortex 
flow. Sneyd [2] considers simple geometry leading to nonpotential Lorentz forces - geometry with a uni- 
form external field at right angles to the axis of the cylinder. 

It is shown [2] that if the magnetic Reynolds number is small, it is possible to distinguish an initial 
stage in the development of vortex flow in the cylinder which lasts for a time of the order t o = 47ro-a2/c 2, 
where a is the radius of the cylinder, and ff is the conductivity of the fluid. During this stage the flow is 
determined solely by the Lorentz forces, and other factors such as viscosity and convective transport of 
eddies have a negligible effeeti they become important later. Sneyd [2] calculates the flow established to 
the end of this initial stage. 

It is of interest to examine vortex flow resulting from the penetration of an external field into a 
moving fluid. In this case the magnetic field is established in the fluid both by diffusion and by the con- 
vective transport of lines of force. This complicates the distribution of Lorentz forces and the distribu- 
tion of eddies in the fluid. 

In the present paper the initiation of secondary vortex flow in a moving fluid is treated through the 
example of a rotating fluid cylinder. The conducting fluid is contained in a long nonconducting cylinder of 
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inside radius a. The container and fluid rotate about the axis of the 
cyl inder  with a constant angular  velocity ~0" At t ime t = 0 a uniform 
external  magnetic  field is turned on instantaneously at r ight  angles 
to the axis of the cylinder.  It is  required to determine the dis tr ibu-  
tion of the magnet ic  field and the Lorentz forces  inside the fluid, 
and f rom these to find the velocity distribution of secondary  flow. 

F o r  ~0 = 0 the problem under discussion reduces  to Sneyd's 
problem [2], and therefore  the solution presented below is a gen- 
eral izat ion of [2] to the case of a rotating cylinder.  Just  as in [2], 
the magnetic  Reynolds number, calculated f rom a typical secondary 
flow of speed V, is assumed small 

R ~ '  = 4 h a  V a / c  ~ t  (I.i) 

where the pr ime emphasizes  that the number is calculated from the 
secondary flow speed. 

No res t r ic t ions  are  imposed on the magnet ic  Reynolds number R~  = 47ro~.a2/c2calculated from a 
111 U -- 

typical velocity a~  0 of the basic rotational motion. Since R m = 2r io /T,  where t o = 4vo-a2/c 2 is the time of 
penetration of the field, and T = 2rr/f~0 is the t ime for one revolution of the cylinder,  for R m << 1 the ro ta-  
tion does not affect the penetration of the field or  the charac ter  of the secondary flow. Fo r  Rm~ 1 this ef-  
fect is significant, and the charac te r  of the secondary flow differs sharply from the case of a s tat ionary 
cylinder.  

As in [2] we do not consider  the whole penetration process  and the subsequent change of vortex flow. 
The purpose of the study is to obtain a picture of the flow up to the instant of almost  complete es tabl ish-  
ment of a s tat ionary magnetic field in the cylinder, i.e.,  up to the end of the initial stage. While this flow 
is steady in [2], in the case of a rotat ing cylinder the Lorentz forces  do not vanish with the establishment 
of a s tat ionary distribution of the magnetic field, and their  effect on the secondary  flow continues. We a r -  
b i t rar i ly  take the t ime t=to as the instant of establishing the field. Most  of the graphical mater ia l  presented 
below re fe r s  to this t ime, although the solution obtained is valid for t imes somewhat longer than to, until 
the effect of viscosi ty  and convective t ranspor t  of eddies becomes significant. 

2. We calculate the distribution of the magnetic field. In a cylindrical  coordinate sys tem (r, ~, z) 
with the angle ~ measured  f rom the direction of the applied uniform field H0, the required magnetic field 
tt has two components [Hr(r , ~, t), Ha(r ,  ~, t)] determined by the vector  potential A=A(r ,  ~, t)e z 

( I OA OA ) 
H =ca r l a  = 7 0~ ' -~-r '0  

The change in the magnetic  field as it penetrates  the rotating cylinder is descr ibed by the equations 

OA,. o OA,. _{_ %~AA~ (2.1) h A  I = O, --'gt- = - -  "" o - "6T  

Here ~m = c2/4~'~ and the subscr ipts  1 and 2 re fe r  to the field outside and inside the cylinder, r e -  
spectively. As the velocity in the convective te rm in the second equation we take the velocity v 0 = ~20re a of 
the basic rotational motion. On the basis of (t.1) the secondary flow does not affect the penetration of the 
field. The initial and boundary conditions are  the same as in [2] for a s tat ionary cylinder: 

a2 ) ' 
A l  (r, % O) ~ Ho r - -  .- 7 -  s m  a,  A~(r,a,O)=O (2.2) 

Az  (a, co, t) = A~ (a, a ,  t), OA1 a.4.,. 
-gT-r [r=~ = ---57- [r=~ (2.3) 

A z ( r  , a, t) --~ Horsina for r -+  ~ (2.4) 

We seek a solution in the form 

A z ( r ,  ct, t) = ] t ( r , t )  e ~ ,  A ~ _ ( r , a , t )  = /~_(r,t) e i~ 

For  the complex functions f l ( r ,  t) and fa(r, t) we obtain the equations 
( o h )  i 

rZ OrO r - - ~  - - - Z - / l ( r ,  t ) =  0 

o/_, "m o ( ~ / : ) ( " ~  , ) 
o~ 7 Or r - -  - 7 .  ~- i.o. o /.2 (r, t) 

(2.5) 
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/ , ( r , O ) = - - i H o ( r - - ~ - ) ,  /~(r, 0) = 0 (2.6) 

= ~ ~=~ (2.7) 

]~ (r, t ) r ~  --*- --  iHo r (2.8) 

The equations can be solved by taking Laplace transforms. The expressions for Al(r , ~, t) and 
A2(r , ~, t) have the form 

.L (r, a, t) = -- i t tore~{l--  a2 [1 ' -" Y~(~3) ~e-%?+~nm)~]~ ~- 2 ~  + 4  ~ 1 ~  j l  (2.9) 

: r  , - (~n2+~Rm)- .  

A'-(r'a't)=21I~ 3Jo(~3) +2i~_j  ~ [ ~ / - ~ )  j (2.10) 

H e r e  fl = x/JR m is  a complex  number ,  the c~n a r e  the posi t ive  z e r o s  of J0(x), T= (um/a2) t=t / to  is  the 
d imens ion l e s s  t i m e , ' a n d  ~ = r /a  is  the d i m e n s i o n l e s s  rad ius .  In the l imi t ing  ca se / ?  = 0(a  0 = 0) the rea l  pa r t  
of (2.10) is the same  as  the r e su l t  in [2]. 

F o r  T> 1, i .e . ,  a f t e r  a lapse  of t ime of the o r d e r  to, the s e r i e s  in (2.9) and (2.10) p r a c t i c a l l y  vanish,  
and the solut ion b e c o m e s  s t a t iona ry .  The s teady  magne t i c  field in this  ca se  d i f fe rs  f r o m  the un i fo rm field 
H 0 s ince  the l ines  of f o r c e  a re  twis ted  by the ro ta t ing  cy l inder .  

P i c t u r e s  of the l ines  of fo r ce  c o r r e s p o n d i n g  to the solution obtained a r e  not  p r e s e n t e d  in g raph ica l  
fo rm,  s ince a g raph ica l  r e p r e s e n t a t i o n  of them can be obtained f r o m  i l l u s t r a t ive  m a t e r i a l s  p r e s e n t e d  in 
[3], where  a n u m e r i c a l  me thod  is  used  to inves t iga te  the behavior  of the magne t i c  f ield in a ro ta t ing  con-  
duct ing fluid. 

The d i f f e rence  between the init ial  condit ions for  the f ield taken in [3] and those  in the p r e s e n t  pape r  
is  un impor t an t  fo r  e s t ab l i sh ing  the pa t t e rn  of  the magne t i c  field d is t r ibut ion .  The d i f f e rence  in boundary  
condi t ions  is impor t an t .  In the p r e s e n t  pape r  the ro ta t ing  cy l inder  i s  in a nonconduct ing  med ium,  and the 
na tu ra l  boundary  condit ion at inf ini ty is  used  in the solution.  In [3] it was  a s s u m e d  that  outs ide  the r o -  
ta t ing fluid of f ini te  conduct iv i ty  a the re  i s  a boundary  with a s t a t i ona ry  p e r f e c t l y  conduct ing fluid. This 
condition leads  to the v e r y  s t rong  i n c r e a s e  of the magne t i c  field at  the ou te r  boundary  of  the ro ta t ing  fluid 
noted in [3] fo r  l a rge  R m. In the p r o b l e m  under  d i s cus s ion  the s teady  magne t i c  f ield outs ide  the cy l inder  
as  R m ~  ~ coinc ides  with the ini t ial  d i s t r ibu t ion  and the m a x i m u m  value of the f ield is  2H 0 (at a = •  
i .e . ,  the f ield s t r eng th  is  doubled.  

The e jec t ion  of the magne t i c  f ield f r o m  the ro ta t ing  fluid for  l a rge  va lues  of R m is  un re l a t ed  to the 
boundary condit ions employed .  

We ca lcu la te  the eddy ve loc i ty  d i s t r ibu t ion .  In a moving  conduct ing fluid the change in vo r t i e i t y  w = 
c u r l v o c c u r s  both as  a r e su l t  of convect ive  t r a n s p o r t  and diffusion because  of v i scos i ty ,  and as a r e su l t  of 
the nonpotent ial  L o re n t z  f o r c e  c -1 [j x HI. F o r  two-d imens iona l  flow of an i n c o m p r e s s i b l e  f luid the equa-  
t ion fo r  the vo r t i c i t y  has  the f o r m  

O o  Ot 4- (v0V) o) + (vV)~o= l c u r l [ j  • HI +vA0) (3.1) 
- p c  - 

H e r e  u i s  the k inema t i c  v i scos i ty ,  v = a0re  a is  the given ve loc i ty  of ro ta t iona l  mot ion ,  and v denotes  
the s e c o n d a r y  flow ve loc i ty .  

I t  is  shown in [2] that  the v i s c o s i t y  and the convect ive  t e r m  (in our  case  one of  two convect ive  t e rms )  
do not af fec t  the d i s t r ibu t ion  o f  v o r t i c i t y  e s t ab l i shed  up to the t ime t o of the tota l  pene t r a t ion  of the magne t i c  
f ield into the cy l inder .  

As i s  c l e a r  f r o m  the e s t ima te  

I (vV)(0 V a  , vA~, ~ (3.2) 

a s s u m p t i o n s  (1.1), and the inequal i ty  U/um << 1, which holds f o r  l iquid m e t a l s  and e l e c t r o l y t e s ,  the las t  
t e r m s  on both s ides  of  Eq. (3.1) can be neg lec ted  in c o m p a r i s o n  with the f i r s t  t e r m .  
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As a r e su l t  we obtain the equation 

0o)07 + ~o OO~oa : i-~-curlz[J,~c • H] ((a = ~oe~) (3.3) 

w h i c h d i f f e r s  f r o m  the cor responding  equation in [2] only by the convective t e r m  ~0 d ~ / d a  r e l a t ed  to the 
basic  rota t ional  motion.  The  r igh t -hand  side of Eq. (3.3) is  evaluated f rom the known solution (2.10) for  
the magnet ic  .field. Calculat ions give 

o-~curtz[j X H] = Re {Fz (r, t) e ~= + F~ (r, t)} 

n = l  k = l  

t.upa~ ~ ,3Jo (~) n=.t J] (an) 

+ Z E } 
n~ ' t .  k = l  

(3 .4 )  

(3.5) 

(3.6) 

The complex functions F t ( r  , t) and F2(r , t) do not depend on the angle a ,  and t he re fo re  the ~ depen-  
dence is  desc r ibed  sole ly  by the fac tor  exp(2ia)  in the f i r s t  t e r m  of (3.4)~ Because  of this f ac to r  the v o r -  
tex flow degene ra t e s  into four  sepa ra t e  cel ls  when ~0 =0. The second t e r m  of F2(r , t) i s  r e la ted  to the r o -  
tat ion and is  absent  when the cyl inder  i s  s ta t ionary .  

As a r e su l t  of the p r e s ence  of the fac tor  exp(-an2~ ") in Eqs. (3.5) and (3.6) the s t rong action of the 
magnet ic  field on the rota t ing fluid, 

Ho ~ t [ 3, (~)  '~* J{ G%)'~ (3.7) 
~ c c u r l z [ j X t t ] = R e  iR~  n~a~ 5 \.~Jo(@ ) Jo(~) J 

c e a s e s  to depend on the angle a and the t ime t when T >> 1. Here  the a s t e r i s k  denotes the complex conju- 
gate. This  quanti ty toge ther  with the v i scos i ty  de t e rmines  the steady flow which was inves t iga ted  in [4] 
for  Rm>> 1. 

The solution of Eq. (3.3) with the r igh t -hand  side of (3.4) sat isfying the ini t ial  condition w(r, a ,  0) = 
2fl 0 is  sought in the complex fo rm:  

co(r, a , t ) - ~  2~ o - ~ % ( r ,  u, t)  ~-to~(r,t) r = q~(r,t) e ~ (3.8) 

The unknowns ~p(r, t) and w~(r, t) sa t i s fy  z e r o  init ial  conditions 
and the equations 

3. o d~/dt + 2i~oqv = F a (r, t), d~%/dt = F~ (r, t) 

1 1  I ~ Omitt ing the in te rmedia te  calculat ions,  including the summing of 
. . . . . . . .  the s e r i e s  by using contour integrat ion,  the r e su l t  of the integrat ion 

can be wri t ten  in the fo rm 

s 

/.g 

/ 

I 

g. 5 LO 

~/~e2'(~-aoO (3.9) 
o~ (r, ,~, t > to) = 4~p~,  " ~ (D, ~o~ (r, t > to) - -  .~o~ r  (~, "0 

c~ 

2Jo 2 (~) ,B~ ( 3.11 ) 
c~ 

~=~ -J~ (%) So(~%) (%~ - ~,,,)~ ~- m~;c ~ )  so@) 

As a consequence of replac ing  exp (-~nZT) by zero  the solution 
p resen ted  he re  is  valid only for  T>> 1. P rac t i ca l ly ,  i t  can be applied 
f rom the t ime  T = 1 with only a smal l  e r r o r .  
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F o r  Rm<< 1 the solution is s implif ied:  

Re oh (r, a, t > to) 

Ill[" Re o~ (r, a, t > to) ~ 4.~f~v 

c o  

5 ]. 3z ~=~ I~ (:z) J~ (%) (%~ § Rm~y ) 

_ _  1~., ( 5 ( i _ ~ ) ~  -2- -2-. -k 16 ~,~Jx(%~)[l~ (an) --  ~'r;} 

F o r  a s t a t ionary  cyl inder  (a0 = 0, R m = 0) the vor t ic i ty  ~'2 vanishes ,  and Re cot(r , a ,  t > t  0) ag rees  with 
the resu l t  in [2]. The di f ference  in constants  a r i s e s  f rom the use of different  s y s t e m s  of units.  

The d imens ion less  functions ~1(~5 and ~2(~, ~') were  evaluated for  th ree  values  of R m (0.01, 0.1, 1.05; 
the r e su l t s  a r e  p re sen ted  graphical ly .  F igure  1 shows the modulus (curve 1) and the a rgumen t  (curve 2) 
of the function 

Since I~l (~)1 v a r i e s  slowly with Rm, the three  curves  m e r g e  into one. The angle 0 is near ly  p r o -  
port ional  to Rm, and the re fo re  Fig.  1 shows 0 (~) /Rm,  which is  r ep re sen t ed  by a single curve for  the three  
values  of R m- 

Since the r ea l  value of co2(r, t5 is comple te ly  de te rmined  by only the rea l  p a r t  of ~2(~, ~'), Fig. 2 
shows Re ~2(~, ~) for  two values  of ~- (1.0, 2.0) (solid curves) .  As a consequence of the l inear  dependence 
of ~2(~, m) on ~ the function Re ~2(~, ~') can be const ructed f rom the data p resen ted  for  any t ime  m. F o r  

c la r i ty  the curve  for  ~'=3 is  shown dashed in Fig. 2. 

Equation (3.8) shows that the secondary  flow under  study is  a superposi i ion of two qual i ta t ively dif-  
fe ren t  flows. The f i r s t  of these ,  de te rmined  by the vor t ic i ty  cot(r, a ,  t) and containing the exponential  f ac -  
t o r  exp (2in), has a s t ruc tu re  consis t ing of four  sepa ra t e  cells .  This flow is  shown schemat ica l ly  in Fig. 3. 
The fluid c i rcu la tes  in opposite d i rec t ions  in adjacent  cells;  i .e. ,  col changes sign in c ross ing  the boundary 
between cel ls .  Consequently,  this boundary is  de te rmined  by the condition Re c01(r, w, t) = 0. The equa-  
t ions a 0 = a0(~) of the radia l  pa r t s  of the boundaries  of the cel ls ,  shown dashed in Fig. 3, take the fo rm 

a 0 ~  --  + 0  (~) + n--~- ~- f20t 

where  n = 0, 1, 2, 3, r e spec t ive ly ,  fo r  each of the four cells;  the l as t  t e r m  ~0 t ensu re s  the rota t ion of the 
cel ls  with constant  angular  ve loci ty  ~0. 

In the genera l  case  ~0 ~ 0 (i.e., R m ~  05 these  boundaries  a re  twisted.  As can be seen f r o m  Fig.  1 
the angle of to rs ion  1/20(~) is d i rec t ly  propor t ional  to Rm; for  Rm = 1 this angle r eaches  12 ~ It  i s  c l ea r  
f rom (3.105 that the "ce l lu la r "  flow for  t > t  0 ceases  to depend on the t ime  and is  only shifted in space by 
the basic  rotat ion with the angular  ve loci ty  ~0" 

The flow desc r ibed  by the vor t i c i ty  co~(r, t) i s  comple te ly  a x i s y m m e t r i c .  This  a x i s y m m e t r i c  flow 
continues to depend on t ime  for  t > t  0 and, consequently,  the vor t ic i ty  CO2 and the flow veloci ty  depend l in-  
e a r l y  on the t ime.  This  is  a r e su l t  of the fact  that  a f t e r  the s teady s tate  is  es tab l i shed  the magne t ic  field 
continues to exer~ a s t rong  effect  (nres is tance")  on the rotat ing fluid and i ts  effect  is  a x i s y m m e t r i c  (3.7). 
As a resu l t  this flow becomes  predominant  for  l a rge  t, and the secondary  flow begins to approach  axial  
s y m m e t r y .  F o r  the smal l  values  of R m n e c e s s a r y  fo r  this the t ime  turns  out to be r a t h e r  l a rge ,  and the 

Fig.  3 

p re sen t  t r ea tmen t ,  which neglects  v iscous  fo rces  and the convective 
t r a n s p o r t  of eddies by secondary  flow, becomes  inappl icable  e a r l i e r .  If  
R m ~  1, the ftow cor responding  to co2 rapidly  becomes  controll ing.  The 
veloci ty  field will be de te rmined  la te r ,  and d i ag rams  of the s t r eaml ine s  
will be presen ted .  

4. The veloci ty  field of the secondary  flow is  de te rmined  by the 
equations 

d i v v  ~ 0, curl v = o = (o(r, a , t )  ez 

f rom which i t  follows that  

i ow o~" v =curl [T'(r, a, t) ez] = - -  r o a  er --  ~ e~ 
H~ ~(I) 1~ e2i(~-Rm ":) 

(4.1) 

(4.25 
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F i g .  5 

On the  r i g h t - h a n d  s i d e  of the l a s t  equa t ion  the t e r m  2s which  d o e s  
not r e f e r  to s e c o n d a r y  flow, has  been o m i t t e d .  The so lu t ion  fo r  the  s t r e a m  
func t ion  i s  sought  in the  f o r m  

tF (r, a, t) H')2a~- = . n-~2 (., ~) (4.3) 4 ~ , m  ~ (~, a, % r (L a, ~) = ~ (~.) e ~(~-'m~) ' 

The func t ions  Ct(~) and  ~2(~, ~) which  a r e  bounded a t  ~ = 0 a r e  d e t e r -  
m i n e d  by the  equa t ions  

(4.4) I d ' 
- ~- ~ = - r 

' 2 U / =  - % (~, ~) (4.5) 

and the s u p p t e m e n t a r y  b o u n d a r y  condi t ion  

tp~ (i) ---- 0 (4.6) 

fo l lowing  f r o m  the cond i t ion  Vr[r= a = 0. 

The funct ion  ~z(~, ~-) can be d e t e r m i n e d  to wi th in  a cons tan t ,  s i n c e  a c o n s t a n t  d o e s  not a f f ec t  the  v e -  
l o c i t y  v. F o r  d e f i n i t e n e s s  we use  the condi t ion  r ~-) = 0. The so lu t ion  of the  l i n e a r  i n h o m o g e n e o u s  e q u a -  
t ion  (4.4) s a t i s f y i n g  condi t ion  (4.6) i s  found by u s i n g  the G r e e n ' s  funct ion and has  the  f o r m  

'~ I1 1 
= + + 

Equation (4.5) can be integrated directly, 

i i ~P2 (~, "c) = sqP2 (s, ~:) ds dp -= - -  In ~ sqP~ (s, "0 ds - -  (In s) s(I)~ (s, v,) ds 
o 

The d i m e n s i o n l e s s  s t r e a m  funct ion ~b(~, ~ ,  v) d e t e r m i n e s  the v e l o c i t y  f i e ld  t h rough  (4.1) and (4.3), 

v (r, a, t) = 4._~_~ k~_Re__~ . / / 0 ~ a  [ I 0r e , ,  O• -- Be ---~- e,~] J (4.7) 
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The streamlines are represented by the lines for Re ~(~, ~, ~-) = const. 

Figures 4 and 5 show the streamlines with the corresponding values of the dimensionless stream 
function ~ for R m = 0.i and R m = 1.0. The change in the character of the secondary flow with time is traced 
for R m =0.I. For T=l (F ig .  4a, curves 1-7 correspond to the valuesg=0, 0.005, 0 , -0 .005 , -0 .01 , -0 .015 ,  
and -0.02, respectively) the flow is similar to that found in [2] when the field penetrates a stationary cyl- 
inder. There are cells with opposite directions of rotation although they do not reach the center of the cir-  
cle, since close to the center w2 predominates over wl even for ~- = 1, as can be seen from Figs. 1 and 2. 

For ~-=2 (Fig. 4b, curves 1-6 correspond to 9=0, 0 , -0 .01 , -0 .02 , -0 .03 ,  and-0.04, respectively) 
axisymmetric flow corresponding to the vorticity o~2(r , t) is not so intense as to completely smear out the 
cellular structure of the flow corresponding to the vorticity o~l(r , ~, t). Only for T = 3 (Fig. 4c, curves 1-4 
correspond to 9 =0, -0.02, - 0.04, and-0.06, respectively) does the flow take on the second characteristic 
form with the streamlines encircling the axis of the cylinder. 

For R m = 1 the flow w2(r, t) predominates from the time T = 1, and therefore on Fig. 5 the stream- 
lines are show1~ only for this instant. Here 1) ~=0; 2) 9 =-0.04; 3) 9 = -0.09; 4) 9 =-0.14. 

On the basis of (4.7) assumption (1.1) is equivalent to the condition 

(Ho214~p) (4~z alc2)2< t 

1. 

2. 

3. 
4. 
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